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Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.
● UC Berkeley CS294-162: AI-Systems (LLM Edition), Fall 2023, by Profs. Joseph E. Gonzalez and Matei Zaharia, 

https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e
29abb

● Shubham Gupta, “State Space Models 101”, https://github.com/goodhamgupta/ssm_101/blob/main/ssm_101.pptx
● Stanford CS336: Language Modeling from Scratch, Spring 2024

○ by Profs. Tatsunori Hashimoto,  Percy Liang, https://stanford-cs336.github.io/spring2024/
● Stanford CS229S: Systems for Machine Learning, Fall 2023
                by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/
● CMU 11-667: Large Language Models: Methods and Applications, Fall 2024

by Profs. Chenyan Xiong and Daphne Ippolito,  https://cmu-llms.org 
● CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024

by Prof. Graham Neubig, https://phontron.com/class/anlp2024/lectures/
● UPenn CIS7000: Large Language Models, Fall 2024

by Prof. Mayur Naik, https://llm-class.github.io/schedule.html
● UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024

by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
● MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024
                       by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940
● UMD CMSC848K: Multimodal Foundation Models, Fall 2024

by Prof. Jia-Bin Huang, https://jbhuang0604.github.io/teaching/CMSC848K/
● NeurIPS 2024 Invited Talk: “Systems for Foundation Models, and Foundation Models for Systems,”
                    by Prof. Chris Re, Stanford.
● CUHK-SZ CSC6203: Large Language Models, Fall 2024
                  by Prof. Benyou Wang, https://llm-course.github.io; https://github.com/FreedomIntelligence/CSC6203-LLM
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State Space Models (SSMs), 
Selective State Space Models (SSSMs) and 

MAMBA

High-level Summary Video:
MAMBA and State Space Models Explained | SSM Explained

by AI Coeffee Break with Letitia
https://www.youtube.com/watch?v=vrF3MtGwD0Y

Detailed Insights by the Inventor: Prof. Albert GU, 
On the Tradeoffs of State Space Models

https://simons.berkeley.edu/talks/albert-gu-carnegie-mellon-university-2024-09-27

https://icml.cc/virtual/2024/39087
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State Space Models 101
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Shubham Gupta
       in/shubhamgupta2208         shubhamg.in 



Sequence Modelling: Recap
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Goal: Map an input sequence to an output sequence



Sequence Modelling: Models
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Sequence Modelling: Transformers
➢ SoTA on sequence modelling tasks
➢ Struggle to scale over long sequences
➢ Why do we care?

○ Enable new capabilities
○ Model other sequential data
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Long Range Arena Benchmark
➢ LRA [Yi Tay et al., 2020]
➢ Measure long-context model quality
➢ Multiple input modalities
➢ Total tasks: 6
➢ Input sequence length: 1k-16k
➢ Transformer Performance:

○ Avg. Accuracy: 52% 👎
○ Unable to solve Path-X 
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Obtain best of all 
models for 

long-context?
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State Space Models
➢ Kalman, 1960
➢ Used in control theory/signal 

processing
➢ Modelled as continuous-timed 

differential equation
➢ 1-layer, Linear Model
➢ Time - Invariant
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Deep SSMs
➢ Deep, non-linear model
➢ Deterministic transformation
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SSM Properties
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SSM: Recurrent
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SSM: Convolutional
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SSM: Convolutional Kernel
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SSM: Convolutional Kernel
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SSM: Convolutional Kernel
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SSM: Convolutional Kernel
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Deep SSM: Challenges
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➢ Modelling Challenge
○ SSMs inherit problems of CNN,RNN 

on LRA
○ Random init A 

■  60% acc sequential MNIST 🙁
➢ Computation Challenge

○ SSM has nice properties if      and 
are known

○ Computing them is hard!
➢ Computing the Kernel

○ A power 🔼-> vanishing gradient?
○ A power 🔼-> O(D2N) computation

■ Ideal -> O(N)



Mamba(S6): Selective SSM
➢ SSSSSS…🐍
➢ Improves SSM performance on 

copying tasks
➢ Handles input data that is 

varying in time
➢ Only supports recurrent form

20
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Mamba: Architecture
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Mamba: Implementation
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Mamba: Scan Operation
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References on Parallel Scan
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● Slides from: Dan Grossman, U of Washington, 
http://homes.cs.washington.edu/~djg/teachingMaterials/spac

● Slides from David Walker, Princeton, 
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.
pdf

● MIT 18.337 Modern Numerical Computing Lecture notes on Parallell Prefix: 
https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf

● Parallel Scan – Udacity, Slides from 
https://youtu.be/OO3o14cINbo?si=6ft0vTCU5FSu8Rl2

● Stanford CS149 Parallel Computing lecture: 
https://www.youtube.com/watch?v=Ba3TqxSgnTk

http://homes.cs.washington.edu/~djg/teachingMaterials/spac
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf
https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf
https://youtu.be/OO3o14cINbo?si=6ft0vTCU5FSu8Rl2
https://www.youtube.com/watch?v=Ba3TqxSgnTk


The Prefix-sum Problem
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Parallel Prefix Sum
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Parallel Prefix Sum
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Parallel Prefix Sum
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Parallel Scan: Another Example
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Parallelizing a Recurrence Relation Computation via
Parallel Scan

- The parallel scan operation works in two passes:
- An Up-sweep
- A down-sweep

- During the up-sweep,  we first break down our input into blocks. Here, 
assume that we use a block of 2 elements

- The variable ”R” just represents the range of elements being considered, 
and the variable “S” represent the sum

- Initialize the variable “S” for each left node in the tree as the element at 
that index

- Sum up child nodes and assign the value to “S” in the parent node



Parallel Scan: Up-Sweep
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Parallel Scan: Up-Sweep
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Parallel Scan: Up-Sweep
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Parallel Scan: Down-Sweep
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Parallel Scan: Down-Sweep
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Parallel Scan: Down-Sweep
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Parallel Scan: Down-Sweep
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Parallel Scan: Final Result
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Mamba: Synthetic Tasks Results
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Mamba: LM Results
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Mamba: Scaling Results
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Mamba: Other Modalities 
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Mamba: Derivatives
➢ Jamba
➢ MambaByte
➢ Vision Mamba
➢ Mamba MoE
➢ U-Mamba
➢ Mamba-Morph
➢ Swin-UMamba
➢ Graph Mamba
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[O, Lieber et al., 2024]
[J Wang et al., 2024]
[Zhu, L, et al. , 2024]
[Pióro, Maciej, 2024]
[Ma, Jun et al., 2024]
[Guo, Tao et al., 2024]
[Liu, J, et al., 2024]
[Behrouz et al., 2023] 

Mamba got 
Outstanding Paper Award in COLM 2024



Theoretical Work on Capabilities of SSMs vs. Transformers
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● Naoki Nishikawa, Taiji Suzuki. ”State Space Models are Provably 
Comparable to Transformers in Estimating Functions in Dynamic Token 
Selection,” to appear in ICLR 2025.

● Samy Jelassi, David Brandfonbrener, Sham M. Kakade, Eran Malach, 
“Repeat After Me: Transformers are Better than State Space Models at 
Copying, Transformers are Better than State Space Models at Copying”, 
ICML 2024. 



Conclusion
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➢ SSMs are a promising 
alternative to attention.

➢ Inference according to input 
was realized by Mamba.

➢ Hardware-Aware algorithms 
are the key to scale.

➢ Promising other research:
○ RWKV    [Peng, Bo et al., 2023]
○ Gemini 1.5   [Gemini Team, 2024]



RWKV -  Receptance Weighted Key Value

(pronounced as “RwaKuv”)



Receptance Weighted Key Value 
(RWKV): Reinventing RNNs for the 

Transformer Era
(based on the “old” RWKV-v4 architecture)

Presentation by Devan S. Zhun W. Ziyang W.



RWKV
Beyond Transformers - Intro to RWKV Architecture & The World Tokenizer

Eugene Cheah & Harrison Vanderbyl, Dec 2023
https://www.youtube.com/watch?v=I-HMKky7Qsw

Performance of Eagle-7B, an RWKV-v5 Architecture, Jan 2024
https://www.youtube.com/watch?v=gHdRgfmAVIw

Latest model as of Feb 2025: RWKV-v7 (Goose)
https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v7/rwkv_v7_demo.py
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High-Level Overview of 
RWKV



RNN vs. CNN vs. Quai-RNN

Source: J. Bradbury et al, Quasi RNN, 2016, https://arxiv.org/pdf/1611.01576v2  See also: https://paperswithcode.com/method/qrnn

https://arxiv.org/pdf/1611.01576v2


From RNN to Quai-RNN to RWKV

RWKV builds on existing sequence-to-sequence models with an 
architecture of stacked residual blocks (alternating time-mixing and 
channel-mixing blocks) 

(Continuous blocks can occur simultaneously)



From RNN to Quai-RNN to RWKV

(Continuous blocks can occur simultaneously)

RWKV builds on existing sequence-to-sequence models with an 
architecture of stacked residual blocks (alternating time-mixing and 
channel-mixing blocks) 



From RNN to Quai-RNN to RWKV

(Receptive field grows in similar manner as CNN)

(Continuous blocks can occur simultaneously)

RWKV builds on existing sequence-to-sequence models with an 
architecture of stacked residual blocks (alternating time-mixing and 
channel-mixing blocks) 



RWKV: architecture overview

● R: Receptance vector acting as the 
acceptance of past information.

● W: Weight is the (trainable) 
positional weight decay vector.

● K: Key, analogous to K in standard 
aention.

● V: Value, analogous to V in standard 
aention.



Defining RWKV
The RWKV architecture derives its name from the four primary 
model elements used in the time-mixing and channel-mixing 
blocks:

• R: Receptance vector acting as the acceptance of past information
• W: Weight is the positional weight decay vector (trainable model parameter)
• K: Key is a vector analogous to K in traditional aention
• V : Value is a vector analogous to V in traditional aention



Defining RWKV

The RWKV architecture derives its name from the four primary model elements used in the 
time-mixing and channel-mixing blocks:

• R: Receptance vector acting as the acceptance of past information
• W: Weight is the positional weight decay vector (trainable model parameter)
• K: Key is a vector analogous to K in traditional aention
• V : Value is a vector analogous to V in traditional aention

wkvt  acts in place of An(Q, K, V) without quadratic cost 
(note the scalar interactions)

”Inspired” by “An Attention-Free Transformer (AFT)”, by Zhai et al, 2021



RWKV: architecture overview

● R: Receptance vector acting as the 
acceptance of past information.

● W: Weight is the (trainable) 
positional weight decay vector.

● K: Key, analogous to K in standard 
aention.

● V: Value, analogous to V in standard 
aention.



Channel and Time Mixing

Analog: longer-term memory
(Mix over time and  channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis 
from the authors about the short term and long term natures of channel and time mixing.

https://wiki.rwkv.com/advance/architecture.html


Channel and Time Mixing

Analog: longer-term memory
(Mix over time and  channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

“forget gate”

“forget gate”
(sigmoid of receptance)

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis 
from the authors about the short term and long term natures of channel and time mixing.

https://wiki.rwkv.com/advance/architecture.html


Channel and Time Mixing

Analog: longer-term memory
(Mix over time and  channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

“forget gate”

“forget gate”
(sigmoid of receptance)

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis 
from the authors about the short term and long term natures of channel and time mixing.

(token shifts can just 
be considered as x)̃

(token shifts can just 
be considered as x)̃

https://wiki.rwkv.com/advance/architecture.html


RWKV In-Depth



RWKV: architecture overview
● R: Receptance vector acting as the 

acceptance of past information.
● W: Weight is the (trainable) 

positional weight decay vector.
● K: Key, analogous to K in standard 

aention.
● V: Value, analogous to V in standard 

aention.



RWKV: architecture overview
● R: Receptance vector acting as the 

acceptance of past information.
● W: Weight is the (trainable) 

positional weight decay vector.
● K: Key, analogous to K in standard 

aention.
● V: Value, analogous to V in standard 

aention.
Sigmoid 

(forget gate)



RWKV: architecture overview
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aention.
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RWKV: architecture overview
● R: Receptance vector acting as the 

acceptance of past information.
● W: Weight is the (trainable) 

positional weight decay vector.
● K: Key, analogous to K in standard 

aention.
● V: Value, analogous to V in standard 

aention.



Time-Mixing Block



Time-Mixing Block
Analogous to 
standard transformer



Time-Mixing Block
Token Shift



Time-Mixing Block

“Aention” in RWKV



WKV Computation



WKV Computation



WKV Computation

Engineering trick: special 
treatment for the current 
timestep t. Need an additional 
learned u vector to “compensate 
for degradation of w”.



Time-Mixing Block



Channel-Mixing Block



Channel-Mixing Block



Putting them together:



Notes on efficiency

● Given T tokens, d hidden 
dimension.

● Standard aention: O(T^2d).



Notes on efficiency

● Given T tokens, d hidden 
dimension.

● Standard aention: O(T^2d).
● WKV: 

○ We can reuse v and k!



Notes on efficiency

● Given T tokens, d hidden 
dimension.

● Standard aention: O(T^2d).
● WKV: 

○ We can reuse v and k!
○ Compute (update) the 

wkv score costs O(Td).



Express WKV recursively



Express WKV recursively

Key idea: WKV can be viewed both as 
aention and RNN-like hidden state.



Training: time-parallel mode

Similar to Transformer: take 
advantage of parallelized 
training.

● Wr, Wk, Wv matrices are 
easily parallelizable.

● WKV is time-dependent, 
but can be parallelized 
along axis of batch and 
dimension.

● Further, token shift is 
implemented easily with 
nn.ZeroPad2d((0,0,1,-1)) 



Inference: time-sequence mode

Similar to RNN: take advantage of 
constant memory footprint.

● Replace the time-mixing 
block with the equivalent 
RNN cell.

● Constant speed and memory 
footprint, regardless of 
sequence length.

● In contrast, self-aention 
requires linearly growing KV 
cache for increasing 
sequence length.



Experiments



Performance and scaling behavior



Effect of context length 



Inference efficiency



Observation on prompts

Prompt for ChatGPT: Prompt for RWKV:



Takeaway
Main Contributions:

● A linear “aention” mechanism that replaces the quadratic self-aention.
● Enjoy both parallelization (for training) and constant speed/memory footprint (for 

inference).

Limitations:
● RNN-style single vector representation limits the model’s ability to “look back”, 

compared to exact information retained in self-aention.
● Consequently, prompt engineering is crucial to the model performance.



Rapidly 
Evolving 
Architecture of 
RWKV



Benchmark Performance of RWKV-7 (circa Feb 2025)



More Benchmark Performance of RWKV-7 (circa Feb 2025)



References on RWKV
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● James Bradbury et al (from Salesforce Research), “Quasi-Recurrent Neural Networks,” arxiv:1611.10576v2, 
Nov 2016.

● Shuangfei Zhai et al (from Apple Computer), ”An Attention Free Transformer” (AFT), arxiv:2105.14103, May 
2021. 

● Bo Peng et al, “RWKV: Reinventing RNNs for the Transformer Era,” arxiv:2305:13048, Findings of EMNLP 
2023.

● Bo Peng et al, “Eagle and Finch: RWKV withMatrix-Valued States and Dynamic Recurrence”, 
arXiv:2404.05892v4, Sept 2024, [Interesting discussions in the “Limitations” section of this paper.]

● Zhiyuan Li, Tingyu Xia, Yi Chang and Yuan Wu, “A Survey of RWKV”, arxiv2412.14847v2, Jan 2025
● https://huggingface.co/blog/rwkv
● https://www.rwkv.com
● Short Talk by Eugene Cheah - From idea to LLM (RWKV / Recursal)

https://www.youtube.com/watch?v=yiewqC6qNM8
● Reading the Original RWKV paper with Yannic Kilcher RWKV: Reinventing RNNs for the Transformer Era 

(Paper Explained), https://www.youtube.com/watch?v=x8pW19wKfXQ
● 侯皓文：RWKV论文解读 - 在Transformer时代重塑RNN, https://www.youtube.com/watch?v=oIuAv99GHBs
● Deep Dive on RWKV: 2-hour interview w/ Eugene Cheah, an RWKV committee member: 

https://youtu.be/dvk6X5zeIfY

https://huggingface.co/blog/rwkv
https://www.rwkv.com/
https://www.youtube.com/watch?v=yiewqC6qNM8
https://www.youtube.com/watch?v=x8pW19wKfXQ
https://www.youtube.com/watch?v=oIuAv99GHBs
https://youtu.be/dvk6X5zeIfY


2024 in Post-Transformers Architectures 
(State Space Models, RWKV) 

[LS Live @ NeurIPS]

https://www.latent.space/p/2024-post-transformers
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