IERG5050 AI Foundation Models, Systems and Applications Spring 2025

Beyond Transformers: Alternative Architectures for LLMs SSMs, MAMBA, RWKV

Prof. Wing C. Lau wclau@ie.cuhk.edu.hk http://www.ie.cuhk.edu.hk/wclau

Acknowledgements

Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.

- UC Berkeley CS294-162: AI-Systems (LLM Edition), Fall 2023, by Profs. Joseph E. Gonzalez and Matei Zaharia, <u>https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e</u> 29abb
- Shubham Gupta, "State Space Models 101", <u>https://github.com/goodhamgupta/ssm_101/blob/main/ssm_101.pptx</u>
- Stanford CS336: Language Modeling from Scratch, Spring 2024
 by Profs. Tatsunori Hashimoto, Percy Liang, <u>https://stanford-cs336.github.io/spring2024/</u>
- Stanford CS229S: Systems for Machine Learning, Fall 2023 by Profs. Azalia Mirhoseini, Simran Arora, <u>https://cs229s.stanford.edu/fall2023/</u>
- CMU 11-667: Large Language Models: Methods and Applications, Fall 2024 by Profs. Chenyan Xiong and Daphne Ippolito, <u>https://cmu-llms.org</u>
- CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024 by Prof. Graham Neubig, <u>https://phontron.com/class/anlp2024/lectures/</u>
- UPenn CIS7000: Large Language Models, Fall 2024 by Prof. Mayur Naik, <u>https://llm-class.github.io/schedule.html</u>
- UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024 by Prof. Wenhu Chen, <u>https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/</u>
- MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024 by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940
- UMD CMSC848K: Multimodal Foundation Models, Fall 2024 by Prof. Jia-Bin Huang, <u>https://jbhuang0604.github.io/teaching/CMSC848K/</u>

State Space Models (SSMs), Selective State Space Models (SSSMs) and MAMBA

High-level Summary Video: MAMBA and State Space Models Explained | SSM Explained by AI Coeffee Break with Letitia <u>https://www.youtube.com/watch?v=vrF3MtGwD0Y</u>

Detailed Insights by the Inventor: Prof. Albert GU, On the Tradeoffs of State Space Models <u>https://simons.berkeley.edu/talks/albert-gu-carnegie-mellon-university-2024-09-27</u>

https://icml.cc/virtual/2024/39087

State Space Models 101

Shubham Gupta in/shubhamgupta2208 shubhamg.in

Sequence Modelling: Recap

Goal: Map an input sequence to an output sequence

t

Sequence Modelling: Models

RNN

Source: Medium

Training: O(N) # Inference: O(N) Performance: : CNN

Source: Medium

Sequence Modelling: Transformers

- SoTA on sequence modelling tasks
- Struggle to scale over long sequences
- > Why do we care?
 - Enable new capabilities
 - Model other sequential data

Audio

Energy Forecasting

Long Range Arena Benchmark

- ➢ LRA [Yi Tay et al., 2020]
- Measure long-context model quality
- Multiple input modalities
- > Total tasks: 6
- ➢ Input sequence length: 1k-16k
- > Transformer Performance:
 - Avg. Accuracy: 52% 👎
 - Unable to solve Path-X

ListOps

[MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1 5 8 9, 2]]

Output: 5

Ideal Model Training: O(N) // Inference: O(N) Performance:

Obtain best of all models for long-context?

State Space Models

- ≻ Kalman, 1960
- Used in control theory/signal processing
- Modelled as continuous-timed differential equation
- > 1-layer, Linear Model
- ≻ Time Invariant

$$x'(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx'(t) + Du(t)$$

Deep SSMs

- > Deep, non-linear model
- Deterministic transformation

SSM Properties

Operates on signals/sequences

Efficient online computation

Efficient parallelizable computation

Source: Albert Gu

SSM: Recurrent

$$egin{aligned} x'(t) &= oldsymbol{A} x(t) + oldsymbol{B} u(t) \ y(t) &= oldsymbol{C} x'(t) + oldsymbol{D} u(t) \end{aligned}$$

Discretize:

$$ar{A} = I + \Delta A$$

Recurrent "hidden state"

$$x_k = ar{A} x_{k-1} + ar{B} u_k$$

Out Projection

$$y_k = ar{C} x_k + ar{D} u_k$$

Source: Albert Gu

SSM: Convolutional

$$x_k = ar{A} x_{k-1} + ar{B} u_k \qquad \qquad y_k = ar{C} x_k + ar{D} u_k$$

Expand the terms

$$x_0 = ar{B} u_0 \quad x_1 = ar{A} ar{B} u_0 + ar{B} u_1 \quad x_2 = ar{A}^2 ar{B} u_0 + ar{A} ar{B} u_1 + ar{B} u_2$$

Output will be a linear projection of state

$$egin{aligned} y_0 &= ar{C}ar{B}u_0 + ar{D}u_0 & & \ y_1 &= ar{C}ar{A}ar{B}u_0 + ar{C}ar{B}u_1 + ar{D}u_1 & & \ y_2 &= ar{C}ar{A}^2ar{B}u_0 + ar{C}ar{A}ar{B}u_1 + ar{C}ar{B}u_2 + ar{D}u_2 & \end{aligned}$$

Extracting common coefficients, we get the SSM Kernel

 $ar{K} = (ar{C}ar{A}^iar{B})_{i\in L}$

Source: Albert Gu

Deep SSM: Challenges

Modelling Challenge

- SSMs inherit problems of CNN,RNN on LRA
- Random init A
 - 60% acc sequential MNIST 🙁

Computation Challenge

- \circ SSM has nice properties if $ar{A}$ and $ar{K}$ are known
- Computing them is **<u>hard</u>**!

Computing the Kernel

- A power <a>-> vanishing gradient?
- A power $\square -> O(D^2N)$ computation
 - Ideal -> O(N)

$$egin{aligned} x_k &= ar{A} x_{k-1} + ar{B} u_k \ y_k &= ar{C} x_k + ar{D} u_k \ ar{K} &= (ar{C} ar{A}^i ar{B})_{i \in L} \end{aligned}$$

Mamba(S6): Selective SSM

- ≻ SSSSSS...🐍
- Improves SSM performance on copying tasks
- Handles input data that is varying in time
- > Only supports <u>recurrent form</u>

Mamba: Architecture

Source: Mamba[Albert Gu, Tri Dao 2023]

Mamba: Implementation

Algorithm 1 SSM (S4)		Algorithm 2 SSM + Selection (S6)
Input: $x : (B, L, D)$ Output: $y : (B, L, D)$ 1: $A : (D, N) \leftarrow$ Parameter	Batch size: B Prompt token size: L Token dimensions: D	Input: $x : (B, L, D)$ Output: $y : (B, L, D)$ 1: $A : (D, N) \leftarrow$ Parameter
⊳ Rep	presents structured $N \times N$ matrix	$\triangleright \text{ Represents structured } N \times N \text{ matrix}$
2: B : (D, N) \leftarrow Parameter 3: C : (D, N) \leftarrow Parameter 4: Δ : (D) \leftarrow τ_{Δ} (Parameter) 5: $\overline{A}, \overline{B}$: (D, N) \leftarrow discretize(6: $y \leftarrow$ SSM($\overline{A}, \overline{B}, C$)(x)	$\Delta, A, B)$	2: B : $(B, L, N) \leftarrow s_B(x)$ 3: C : $(B, L, N) \leftarrow s_C(x)$ 4: Δ : $(B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))$ 5: $\overline{A}, \overline{B}$: $(B, L, D, N) \leftarrow discretize(\Delta, A, B)$ 6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$
⊳ Time-inva 7: return y	riant: recurrence or convolution	1 ▷ Time-varying: recurrence (scan) or 7: return y No parallel training

Source: Mamba[Albert Gu, Tri Dao 2023]

Mamba: Scan Operation

Current val = Sum of previous val + input

Current State: Sum of previous state + input

 $y_t = C x_t$

References on Parallel Scan

- Slides from: Dan Grossman, U of Washington, <u>http://homes.cs.washington.edu/~djg/teachingMaterials/spac</u>
- Slides from David Walker, Princeton, <u>https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.</u> <u>pdf</u>
- MIT 18.337 Modern Numerical Computing Lecture notes on Parallell Prefix: <u>https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf</u>
- Parallel Scan Udacity, Slides from <u>https://youtu.be/OO3o14cINbo?si=6ft0vTCU5FSu8RI2</u>
- Stanford CS149 Parallel Computing lecture: <u>https://www.youtube.com/watch?v=Ba3TqxSgnTk</u>

The Prefix-sum Problem

val prefix_sum : int array -> int array

The simple sequential algorithm: accumulate the sum from left to right

- Sequential algorithm: Work: O(n), Span: O(n)
- Goal: a parallel algorithm with Work: O(n), Span: $O(\log n)$

Parallel Prefix Sum

The trick: Use two passes

- Each pass has O(n) work and $O(\log n)$ span
- So in total there is O(n) work and $O(\log n)$ span

First pass builds a tree of sums bottom-up

- the "up" pass

Second pass *traverses the tree top-down to compute prefixes*

- the "down" pass

Historical note:

 Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977

Parallel Scan: Another Example

Parallelizing a Recurrence Relation Computation via Parallel Scan

- The parallel scan operation works in two passes:
 - An Up-sweep
 - A down-sweep
- During the up-sweep, we first break down our input into blocks. Here, assume that we use a block of 2 elements
- The variable "R" just represents the range of elements being considered, and the variable "S" represent the sum
- Initialize the variable "S" for each left node in the tree as the element at that index
- Sum up child nodes and assign the value to "S" in the parent node

Parallel Scan: Up-Sweep

Parallel Scan: Up-Sweep

Parallel Scan: Up-Sweep

Parallel Scan: Down-Sweep

Parallel Scan: Down-Sweep

Parallel Scan: Down-Sweep

Parallel Scan: Down-Sweep

Parallel Scan: Final Result

Mamba: Synthetic Tasks Results

Model	Arch.	Layer	Acc. 18.3 97.0 57.0	
S4	No gate	S4		
- 1	No gate	S 6		
H3	H3	S4		
Hyena	H3	Hyena	30.1	
-	H3	S 6	99.7	
-	Mamba	S4	56.4	
-	Mamba	Hyena	28.4	
Mamba Mamba		S6	99.8	

Selective Copying

Induction Heads

Mamba: LM Results

Model	Token.	Pile ppl↓	LAMBADA ppl↓	LAMBADA acc↑	HellaSwag acc ↑	PIQA acc↑	Arc-E acc↑	Arc-C acc ↑	WinoGrande acc↑	Average acc ↑
GPT-Neo 1.3B	GPT2	_	7.50	57.2	48.9	71.1	56.2	25.9	54.9	52.4
Hybrid H3-1.3B	GPT2	_	11.25	49.6	52.6	71.3	59.2	28.1	56.9	53.0
OPT-1.3B	OPT	_	6.64	58.0	53.7	72.4	56.7	29.6	59.5	55.0
Pythia-1.4B	NeoX	7.51	6.08	61.7	52.1	71.0	60.5	28.5	57.2	55.2
RWKV-1.5B	NeoX	7.70	7.04	56.4	52.5	72.4	60.5	29.4	54.6	54.3
Mamba-1.4B	NeoX	6.80	5.04	64.9	59.1	74.2	65.5	32.8	61.5	59.7
GPT-Neo 2.7B	GPT2	_	5.63	62.2	55.8	72.1	61.1	30.2	57.6	56.5
Hybrid H3-2.7B	GPT2	_	7.92	55.7	59.7	73.3	65.6	32.3	61.4	58.0
OPT-2.7B	OPT	_	5.12	63.6	60.6	74.8	60.8	31.3	61.0	58.7
Pythia-2.8B	NeoX	6.73	5.04	64.7	59.3	74.0	64.1	32.9	59.7	59.1
RWKV-3B	NeoX	7.00	5.24	63.9	59.6	73.7	67.8	33.1	59.6	59.6
Mamba-2.8B	NeoX	6.22	4.23	69.2	66.1	75.2	69.7	36.3	63.5	63.3

Zero-shot Eval on popular benchmarks

Mamba: Scaling Results

Source: Mamba[Albert Gu, Tri Dao 2023]

Mamba: Other Modalities

Zero-shot Eval on popular benchmarks

Mamba: Derivatives

- ≻ Jamba
- > MambaByte
- ➤ Vision Mamba
- ➤ Mamba MoE
- ≻ U-Mamba
- ➤ Mamba-Morph
- > Swin-UMamba
- ≻ Graph Mamba

[O, Lieber et al., 2024] [J Wang et al., 2024] [Zhu, L, et al., 2024] [Pióro, Maciej, 2024] [Ma, Jun et al., 2024] [Guo, Tao et al., 2024] [Liu, J, et al., 2024] [Behrouz et al., 2023]

Mamba got Outstanding Paper Award in COLM 2024

Theoretical Work on Capabilities of SSMs vs. Transformers

- Naoki Nishikawa, Taiji Suzuki. "State Space Models are Provably Comparable to Transformers in Estimating Functions in Dynamic Token Selection," to appear in ICLR 2025.
- Samy Jelassi, David Brandfonbrener, Sham M. Kakade, Eran Malach, "Repeat After Me: Transformers are Better than State Space Models at Copying, Transformers are Better than State Space Models at Copying", ICML 2024.

Conclusion

- SSMs are a promising alternative to attention.
- Inference according to input was realized by Mamba.
- Hardware-Aware algorithms are the key to scale.
- > Promising other research:
 - RWKV [Peng, Bo et al., 2023]
 - Gemini 1.5 [Gemini Team, 2024]

Moar SSM and Mamba Goodness 🍛

RWKV - Receptance Weighted Key Value

(pronounced as "RwaKuv")

Receptance Weighted Key Value (RWKV): Reinventing RNNs for the Transformer Era

(based on the "old" RWKV-v4 architecture)

RWKV: Reinventing RNNs for the Transformer Era

Bo Peng^{1*} Eric Alcaide^{2,3,4*} Quentin Anthony^{2,5*} Alon Albalak^{2,6} Samuel Arcadinho^{2,7} Huanqi Cao⁸ Xin Cheng⁹ Michael Chung¹⁰ Matteo Grella¹¹ Kranthi Kiran GV¹² Xuzheng He² Haowen Hou¹³ Przemysław Kazienko¹⁴ Jan Kocoń¹⁴ Jiaming Kong¹⁵ Bartłomiej Koptyra¹⁴ Hayden Lau² Krishna Sri Ipsit Mantri¹⁶ Ferdinand Mom^{17,18} Atsushi Saito^{2,19} Xiangru Tang²⁰ Bolun Wang²⁷ Johan S. Wind²¹ Stanisław Woźniak¹⁴ Ruichong Zhang⁸ Zhenyuan Zhang² Qihang Zhao^{22,23} Peng Zhou²⁷ Jian Zhu²⁴ Rui-Jie Zhu^{25,26}

Presentation by Devan S. Zhun W. Ziyang W.

RWKV

Beyond Transformers - Intro to RWKV Architecture & The World Tokenizer Eugene Cheah & Harrison Vanderbyl, Dec 2023 <u>https://www.youtube.com/watch?v=I-HMKky7Qsw</u>

Performance of Eagle-7B, an RWKV-v5 Architecture, Jan 2024 <u>https://www.youtube.com/watch?v=gHdRgfmAVIw</u>

Latest model as of Feb 2025: RWKV-v7 (Goose) https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v7/rwkv_v7_demo.py

High-Level Overview of RWKV

RNN vs. CNN vs. Quai-RNN

Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous block means that those computations can proceed in parallel. Blue signifies parameterless functions that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results from the previous timestep.

Source: J. Bradbury et al, Quasi RNN, 2016, <u>https://arxiv.org/pdf/1611.01576v2</u> See also: https://paperswithcode.com/method/qrnn

From RNN to Quai-RNN to RWKV

RWKV builds on existing sequence-to-sequence models with an architecture of stacked residual blocks (alternating time-mixing and channel-mixing blocks)

From RNN to Quai-RNN to RWKV

RWKV builds on existing sequence-to-sequence models with an architecture of stacked residual blocks (alternating time-mixing and

(Continuous blocks can occur simultaneously)

From RNN to Quai-RNN to RWKV

RWKV builds on existing sequence-to-sequence models with an architecture of stacked residual blocks (alternating time-mixing and

(Continuous blocks can occur simultaneously)

(Receptive field grows in similar manner as CNN)

- R: **Receptance** vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: Key, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

Defining RWKV

The RWKV architecture derives its name from the four primary model elements used in the time-mixing and channel-mixing blocks: $\operatorname{Attn}(Q, K, V) = \operatorname{softmax}(QK^{\top})V,$

- R: Receptance vector acting as the acceptance of past information Attn $(Q, K, V)_t = \frac{\sum_{i=1}^{T} e^{q_t^\top k_i} v_i}{\sum_{i=1}^{T} e^{q_t^\top k_i}}$ W: Weight is the positional weight decay vector (trainable model parameter)
- W: Weight is the positional weight decay vector (trainable model parameter)
- K: Key is a vector analogous to K in traditional attention
- V : Value is a vector analogous to V in traditional attention

Attn⁺(W, K, V)_t =
$$\frac{\sum_{i=1}^{t} e^{w_{t,i}+k_i} v_i}{\sum_{i=1}^{t} e^{w_{t,i}+k_i}}$$

$$w_{t,i} = -(t-i)w,$$

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} + e^{u+k_t}}$$

Defining RWKV

The RWKV architecture derives its name from the four primary model elements used in the time-mixing and channel-mixing blocks:

- R: Receptance vector acting as the acceptance of past information
- W: Weight is the positional weight decay vector (trainable model paramete
- K: Key is a vector analogous to K in traditional attention
- V : Value is a vector analogous to V in traditional attention

 wkv_t acts in place of $\mathsf{Attn}(\mathsf{Q},\mathsf{K},\mathsf{V})$ without quadratic cost (note the scalar interactions)

 $\operatorname{Attn}(Q, K, V) = \operatorname{softmax}(QK^{\top})V,$

eter)
Attn
$$(Q, K, V)_t = \frac{\sum_{i=1}^T e^{q_t^\top k_i} v_i}{\sum_{i=1}^T e^{q_t^\top k_i}}$$

Attn⁺(W, K, V)_t =
$$\frac{\sum_{i=1}^{t} e^{w_{t,i}+k_i} v_i}{\sum_{i=1}^{t} e^{w_{t,i}+k_i}}$$

$$w_{t,i} = -(t-i)w,$$

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i}v_i + e^{u+k_t}v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} + e^{u+k_t}}$$

"Inspired" by "An Attention-Free Transformer (AFT)", by Zhai et al, 2021

- R: **Receptance** vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: Key, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

Channel and Time Mixing

Channel Mixing

Analog: shorter-term memory (Mix over channels only)

 $egin{aligned} r_t &= W_r \cdot (\mu_r x_t + (1-\mu_r) x_{t-1}), \ k_t &= W_k \cdot (\mu_k x_t + (1-\mu_k) x_{t-1}), \ o_t &= \sigma(r_t) \odot (W_v \cdot \max(k_t, 0)^2), \end{aligned}$

Time Mixing

Analog: longer-term memory (Mix over time *and* channels)

$$\begin{split} r_t &= W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \\ k_t &= W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \\ v_t &= W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \\ wkv_t &= \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} + e^{u+k_t}}, \\ o_t &= W_o \cdot (\sigma(r_t) \odot wkv_t), \end{split}$$

Please refer to <u>https://wiki.rwkv.com/advance/architecture.html</u> for more thorough analysis from the authors about the short term and long term natures of channel and time mixing.

Channel and Time Mixing

Channel Mixing

Analog: shorter-term memory (Mix over channels only)

$$egin{aligned} r_t &= W_r \cdot (\mu_r x_t + (1-\mu_r) x_{t-1}), \ k_t &= W_k \cdot (\mu_k x_t + (1-\mu_k) x_{t-1}), \ o_t &= \overline{\sigma(r_t)} \odot (W_v \cdot \max(k_t, 0)^2), \end{aligned}$$

"forget gate" (sigmoid of receptance)

Time Mixing

Analog: longer-term memory (Mix over time *and* channels)

$$\begin{split} r_t &= W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \\ k_t &= W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \\ v_t &= W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \\ wkv_t &= \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} + e^{u+k_t}}, \\ o_t &= W_o \cdot (\sigma(r_t) \odot wkv_t), \end{split}$$

"forget gate"

Please refer to <u>https://wiki.rwkv.com/advance/architecture.html</u> for more thorough analysis from the authors about the short term and long term natures of channel and time mixing.

Channel and Time Mixing

Channel Mixing

Analog: shorter-term memory (Mix over channels only)

(token shifts can just be considered as \tilde{x})

$$\begin{split} r_t &= W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \\ k_t &= W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \\ o_t &= \sigma(r_t) \odot (W_v \cdot \max(k_t, 0)^2), \end{split}$$

"forget gate" (sigmoid of receptance)

Time Mixing

Analog: longer-term memory (Mix over time *and* channels)

 $\begin{aligned} &(\text{token shifts can just} \\ &be \ \text{considered as } \tilde{\textbf{x}}) \end{aligned} \\ r_t &= W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \\ &k_t &= W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \\ &v_t &= W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \\ &v_t &= W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \\ &wkv_t &= \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} v_i + e^{u + k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} + e^{u + k_t}}, \\ &o_t &= W_o \cdot (\sigma(r_t) \odot wkv_t), \end{aligned}$

"forget gate"

Please refer to <u>https://wiki.rwkv.com/advance/architecture.html</u> for more thorough analysis from the authors about the short term and long term natures of channel and time mixing.

RWKV In-Depth

- R: **Receptance** vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: Key, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

- R: Receptance vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: Key, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

Sigmoid (forget gate)

- R: Receptance vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: Key, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

$$w_{t,i} = -(t-i)w,$$
 (10)

where $w \in (R_{\geq 0})^d$, with d the number of channels. We require w to be non-negative to ensure that $e^{w_{t,i}} \leq 1$ and the per-channel weights decay backwards in time.

- R: Receptance vector acting as the acceptance of past information.
- W: Weight is the (trainable) positional weight decay vector.
- K: **Key**, analogous to K in standard attention.
- V: Value, analogous to V in standard attention.

$$r_t = W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \qquad (11)$$

$$k_t = W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \qquad (12)$$

$$v_t = W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \tag{13}$$

$$wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} v_{i} + e^{u+k_{t}} v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}, \quad (14)$$
$$o_{t} = W_{o} \cdot (\sigma(r_{t}) \odot wkv_{t}), \quad (15)$$

Analogous to standard transformer $r_{t} = W_{r} \cdot (\mu_{r}x_{t} + (1 - \mu_{r})x_{t-1}), \quad (11)$ $k_{t} = W_{k} \cdot (\mu_{k}x_{t} + (1 - \mu_{k})x_{t-1}), \quad (12)$ $v_{t} = W_{v} \cdot (\mu_{v}x_{t} + (1 - \mu_{v})x_{t-1}), \quad (13)$ $wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}}v_{i} + e^{u+k_{t}}v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}, \quad (14)$ $o_{t} = W_{o} \cdot (\sigma(r_{t}) \odot wkv_{t}), \quad (15)$

$$r_t = W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \qquad (11)$$

$$k_t = W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \qquad (12)$$

$$v_t = W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \qquad (13)$$

$$wkv_{t} = \underbrace{\frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}}v_{i} + e^{u+k_{t}}v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}}_{o_{t} = W_{o} \cdot (\sigma(r_{t}) \odot wkv_{t}), \langle}$$
(14)
(15)

Out

Time

Mixing

"Attention" in RWKV

WKV Computation

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} + e^{u+k_t}}, \quad (14)$$

WKV Computation

$$wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_{i}} v_{i} + e^{u+k_{t}} v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_{i}} + e^{u+k_{t}}}, \quad (14)$$

$$w_{t,i} = -(t-i)w, \quad (10)$$

where $w \in (R_{\geq 0})^d$, with d the number of channels. We require w to be non-negative to ensure that $e^{w_{t,i}} \leq 1$ and the per-channel weights decay backwards in time.

WKV Computation

$$wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}}v_{i} + e^{u+k_{t}}v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}, \quad (14)$$

Engineering trick: special treatment for the current timestep t. Need an additional learned u vector to "compensate for degradation of w".

Time-Mixing Block

$$r_t = W_r \cdot (\mu_r x_t + (1 - \mu_r) x_{t-1}), \qquad (11)$$

$$k_t = W_k \cdot (\mu_k x_t + (1 - \mu_k) x_{t-1}), \qquad (12)$$

$$v_t = W_v \cdot (\mu_v x_t + (1 - \mu_v) x_{t-1}), \qquad (13)$$

$$wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}}v_{i} + e^{u+k_{t}}v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}, \quad (14)$$
$$o_{t} = W_{o} \cdot (\sigma(r_{t}) \odot wkv_{t}), \quad (15)$$

Channel-Mixing Block

$$egin{aligned} r_t &= W_r \cdot (\mu_r x_t + (1-\mu_r) x_{t-1}), \ k_t &= W_k \cdot (\mu_k x_t + (1-\mu_k) x_{t-1}), \ o_t &= \sigma(r_t) \odot (W_v \cdot \max(k_t,0)^2), \end{aligned}$$

Channel-Mixing Block

$$egin{aligned} r_t &= W_r \cdot (\mu_r x_t + (1-\mu_r) x_{t-1}), \ k_t &= W_k \cdot (\mu_k x_t + (1-\mu_k) x_{t-1}), \ o_t &= \sigma(r_t) \odot (W_v \cdot \max(k_t, 0)^2), \end{aligned}$$

Putting them together:

Notes on efficiency

$$\operatorname{Attn}(Q, K, V)_t = \frac{\sum_{i=1}^T e^{q_t^\top k_i} v_i}{\sum_{i=1}^T e^{q_t^\top k_i}}.$$

• Given T tokens, d hidden dimension.

(8)

• Standard attention: O(T²d).

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} + e^{u+k_t}}, \quad (14)$$

Notes on efficiency

$$\operatorname{Attn}(Q,K,V)_t = rac{\sum_{i=1}^T e^{q_t^ op k_i} v_i}{\sum_{i=1}^T e^{q_t^ op k_i}}.$$

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w + k_i} + e^{u+k_t}},$$
(14)

- Given T tokens, d hidden • dimension.
- Standard attention: O(T²d). •
 - WKV:

(8)

• We can reuse v and k!

Notes on efficiency

$$\operatorname{Attn}(Q, K, V)_{t} = \frac{\sum_{i=1}^{T} e^{q_{t}^{\top} k_{i}} v_{i}}{\sum_{i=1}^{T} e^{q_{t}^{\top} k_{i}}}.$$

$$wkv_t = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} v_i + e^{u+k_t} v_t}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_i} + e^{u+k_t}}, \quad (14)$$

• Given T tokens, d hidden dimension.

(8)

- Standard attention: O(T²d).
 WKV:
 - We can reuse v and k!
 - Compute (update) the wkv score costs O(Td).

Express WKV recursively

$$wkv_{t} = \frac{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}}v_{i} + e^{u+k_{t}}v_{t}}{\sum_{i=1}^{t-1} e^{-(t-1-i)w+k_{i}} + e^{u+k_{t}}}, \quad (14)$$

$$wkv_{t} = \frac{a_{t-1} + e^{u+k_{t}}v_{t}}{b_{t-1} + e^{u+k_{t}}}, \quad (20)$$

$$a_{t} = e^{-w}a_{t-1} + e^{k_{t}}v_{t}, \quad (21)$$

$$b_{t} = e^{-w}b_{t-1} + e^{k_{t}}. \quad (22)$$

Express WKV recursively

$$wkv_{t} = \frac{a_{t-1} + e^{u+k_{t}}v_{t}}{b_{t-1} + e^{u+k_{t}}},$$

$$a_{t} = e^{-w}a_{t-1} + e^{k_{t}}v_{t},$$

$$b_{t} = e^{-w}b_{t-1} + e^{k_{t}}.$$
(20)
(21)
(22)

Key idea: WKV can be viewed both as attention and RNN-like hidden state.

Figure 7: RWKV time-mixing block formulated as an RNN cell. Color codes: yellow (μ) denotes the token shift, red (1) denotes the denominator, blue (2) denotes the numerator, pink (3) denotes the fraction computations in 14. *h* denotes the numerator-denominator tuple (a, b).

Training: time-parallel mode

Similar to Transformer: take advantage of parallelized training.

- Wr, Wk, Wv matrices are easily parallelizable.
- WKV is time-dependent, but can be parallelized along axis of batch and dimension.
- Further, token shift is implemented easily with nn.ZeroPad2d((0,0,1,-1))

Inference: time-sequence mode

Similar to RNN: take advantage of constant memory footprint.

- Replace the time-mixing block with the equivalent RNN cell.
- Constant speed and memory footprint, regardless of sequence length.
- In contrast, self-attention requires linearly growing KV cache for increasing sequence length.

Experiments

- **RQ1:** Is RWKV competitive against quadratic transformer architectures with equal number of parameters and training tokens?
- **RQ2:** When increasing the number of parameters, does RWKV remain competitive against quadratic transformer architectures?
- **RQ3:** Does increasing parameters of RWKV yield better language modeling loss, when RWKV models are trained for context lengths that most open-sourced quadratic transformers *cannot* efficiently process?

Performance and scaling behavior

Figure 4: Zero-Shot Performance: The horizontal axis is a number of parameters and the vertical axis is accuracy.

Effect of context length

Figure 5: Increasing context length contributes to lower test loss on the Pile (Gao et al., 2020).

Inference efficiency

Figure 6: Cumulative time during text generation for different LLMs.

Observation on prompts

Additionally, we carried out comparative studies on RWKV-4 and ChatGPT / GPT-4, see Appendix J. They revealed that RWKV-4 is very sensitive to prompt engineering. When the prompts were adjusted from the ones used for GPT to more suitable for RWKV, the F1-measure performance increased even from 44.2% to 74.8%.

Prompt for ChatGPT:

Having premise <here is a premise> judge if the following hypothesis <here is a hypothesis> are logically connected with the premise? Answer "entailment" if yes, or "not_entailment" if no.

Prompt for RWKV:

Can you tell me if the hypothesis is entailment or is not entailment to the premise? premise: <here is a premise> hypothesis: <here is a hypothesis>

Main Contributions:

- A linear "attention" mechanism that replaces the quadratic self-attention.
- Enjoy both parallelization (for training) and constant speed/memory footprint (for inference).

Limitations:

- RNN-style single vector representation limits the model's ability to "look back", compared to exact information retained in self-attention.
- Consequently, prompt engineering is crucial to the model performance.

Rapidly Evolving Architecture of RWKV

Benchmark Performance of RWKV-7 (circa Feb 2025)

* RWKV-7 World-v3 1.5B MMLU 44.84% (organic leap from RWKV-6 World-v2.1 1.6B MMLU 26.34%, no eval-maxxing, no HQ-annealing, no post-training) ***																			
Im-evaluation-harness	params	LAMBADA	English	LAMBADA	PIQA	StoryCloze16	6 Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD	MultiLang	xLBD	xSC	xWG	xCOPA
model	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em	avg%	acc	acc	acc	acc
RWKV-7 "Goose" World-v3	1.52	4.13	67.7%	69.4%	77.2%	76.3%	70.8%	67.9%	42.5%	75.8%	39.0%	46.4%	94.4%	85.3%	58.6%	43.0%	59.7%	72.2%	59.7%
SmolLM2-1.7B (+emb = 1.81b)	1.81	4.45	67.9%	67.4%	76.7%	76.0%	71.5%	66.7%	47.0%	78.0%	39.8%	44.6%	93.4%	86.3%	49.2%	29.3%	52.0%	62.5%	53.1%
Qwen2.5-1.5B (+emb = 1.78b)	1.78	5.68	65.5%	62.2%	75.8%	73.8%	67.9%	63.5%	45.3%	75.4%	37.6%	40.2%	94.6%	83.9%	53.8%	34.1%	55.9%	68.1%	57.1%
stableIm-2-1_6b	1.64	4.94	65.1%	65.8%	76.3%	75.8%	68.9%	64.3%	39.9%	68.6%	34.3%	39.8%	95.3%	86.8%	52.3%	34.8%	53.8%	64.4%	56.3%
RWKV-6 "Finch" World-v2.1	1.60	4.58	62.2%	67.3%	73.9%	74.9%	61.1%	60.5%	34.2%	64.2%	35.7%	38.6%	90.3%	83.7%	56.2%	40.9%	56.7%	69.2%	58.1%
												1							
Im-evaluation-harness	params	LAMBADA	English	LAMBADA	PIQA	StoryCloze16	Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD	MultiLang	xLBD	xSC	xWG	xCOPA
model	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em	avg%	acc	acc	acc	acc
RWKV-7 "Goose" World-v2.9	0.450	6.94	59.9%	58.5%	72.9%	70.5%	56.8%	60.3%	33.0%	66.0%	33.5%	38.2%	89.8%	79.3%	52.4%	34.8%	54.1%	65.3%	55.3%
SmolLM2-360M (+emb = 407m)	0.407	9.36	59.7%	53.4%	71.8%	68.2%	56.4%	59.0%	37.9%	70.2%	34.3%	37.8%	90.8%	77.4%	43.7%	18.7%	49.7%	54.5%	51.8%
RWKV-7 "Goose" Pile	0.421	7.21	55.8%	57.9%	69.2%	67.7%	48.1%	56.4%	27.6%	56.2%	32.1%	32.2%	85.9%	80.2%	47.6%	29.4%	50.7%	57.3%	52.9%
mamba-370m (+emb = 421m) Pile	0.421	8.14	54.7%	55.6%	69.5%	66.3%	46.5%	55.5%	27.9%	55.0%	32.3%	30.8%	84.9%	77.0%	47.2%	28.5%	50.5%	57.3%	52.4%
RWKV-5 "Eagle" World-v2	0.462	8.87	53.1%	54.0%	66.5%	65.7%	40.9%	53.1%	26.3%	54.0%	30.9%	31.2%	86.6%	75.0%	49.5%	32.5%	52.8%	58.8%	54.0%
Im-evaluation-harness	params	LAMBADA	English	LAMBADA	PIQA	StoryCloze16	Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD	MultiLang	xLBD	xSC	xWG	xCOPA
model	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em	avg%	acc	acc	acc	acc
RWKV-7 "Goose" World-v2.8	0.191	12.4	52.6%	49.1%	67.1%	63.7%	42.2%	52.5%	27.6%	56.7%	29.9%	33.0%	85.5%	71.3%	47.5%	27.3%	51.5%	58.1%	53.0%
SmolLM2-135M (+emb = 163m)	0.163	19.0	53.0%	42.9%	68.2%	63.4%	43.2%	53.1%	29.7%	64.3%	31.1%	33.0%	83.8%	70.1%	41.7%	12.5%	49.4%	52.8%	52.0%
RWKV-7 "Goose" Pile	0.168	14.2	49.8%	45.6%	65.5%	61.8%	36.9%	52.3%	24.7%	47.9%	29.1%	30.0%	81.8%	71.9%	43.9%	21.7%	49.3%	52.0%	52.8%
mamba-130m (+emb = 168m) Pile	0.168	16.0	48.5%	44.2%	64.4%	60.4%	35.3%	52.4%	24.3%	48.1%	28.8%	28.6%	78.1%	68.9%	43.7%	20.1%	49.2%	53.2%	52.4%

More Benchmark Performance of RWKV-7 (circa Feb 2025)

Im-evaluation-harness	English	LAMBADA	PIQA	StoryCloze16	6 Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD		
(same dataset & tokenizer)	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em
RWKV-7-Pile "Goose"	1.47	4.80	62.5%	67.0%	73.5%	73.0%	61.8%	64.6%	33.3%	64.8%	36.1%	35.8%	91.5%	85.8%
mamba-1.4b (1.47b if +emb)	1.47	5.04	61.0%	64.9%	74.2%	70.8%	59.1%	61.3%	33.0%	65.5%	36.0%	36.4%	87.1%	83.2%
pythia-1.4b-v0	1.41	6.58	56.8%	60.4%	71.2%	67.7%	50.8%	57.0%	28.6%	57.7%	33.3%	31.0%	85.5%	81.4%
RWKV-4-Pile "Dove"	1.52	6.91	56.8%	57.4%	72.1%	68.0%	52.8%	54.7%	29.2%	60.6%	34.8%	34.0%	84.2%	77.0%
														1
Im-evaluation-harness	params	LAMBADA	English	LAMBADA	PIQA	StoryCloze16	6 Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD
(same dataset & tokenizer)	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em
RWKV-7-Pile "Goose"	0.421	7.21	55.8%	57.9%	69.2%	67.7%	48.1%	56.4%	27.6%	56.2%	32.1%	32.2%	85.9%	80.2%
mamba-370m (421m if +emb)	0.421	8.14	54.7%	55.6%	69.5%	66.3%	46.5%	55.5%	27.9%	55.0%	32.3%	30.8%	84.9%	77.0%
pythia-410m-v0	0.405	11.7	51.3%	50.2%	66.8%	62.5%	39.1%	53.0%	26.0%	50.6%	31.2%	29.6%	81.1%	74.8%
RWKV-4-Pile "Dove"	0.430	13.1	51.1%	45.0%	67.7%	63.8%	40.9%	51.9%	25.3%	52.7%	31.4%	32.6%	80.3%	70.3%
Im-evaluation-harness	params	LAMBADA	English	LAMBADA	PIQA	StoryCloze16	6 Hellaswag	WinoGrande	arc_challeng	arc_easy	headQA_en	openbookQA	sciq	ReCoRD
(same dataset & tokenizer)	В	ppl	avg%	acc	acc	acc	acc_norm	acc	acc_norm	acc	acc_norm	acc_norm	acc	em
RWKV-7-Pile L33-D512	0.164	12.7	50.7%	49.0%	65.7%	62.6%	38.3%	51.3%	25.3%	49.6%	29.1%	30.4%	83.0%	73.6%
RWKV-7-Pile L25-D576	0.165	12.2	50.6%	49.5%	66.5%	62.3%	38.2%	52.5%	24.0%	49.6%	28.4%	29.6%	82.9%	73.0%
RWKV-7-Pile "Goose"	0.168	14.2	49.8%	45.6%	65.5%	61.8%	36.9%	52.3%	24.7%	47.9%	29.1%	30.0%	81.8%	71.9%
mamba-130m (168m if +emb)	0.168	16.0	48.5%	44.2%	64.4%	60.4%	35.3%	52.4%	24.3%	48.1%	28.8%	28.6%	78.1%	68.9%
pythia-160m-v0	0.162	24.4	46.7%	38.8%	62.6%	58.4%	31.7%	52.0%	24.0%	45.3%	28.7%	29.0%	76.5%	66.3%
RWKV-4-Pile "Dove"	0.169	29.2	46.2%	33.1%	64.9%	59.1%	32.2%	51.5%	23.9%	47.1%	28.3%	29.4%	77.2%	61.9%

References on RWKV

- James Bradbury et al (from Salesforce Research), "Quasi-Recurrent Neural Networks," arxiv:1611.10576v2, Nov 2016.
- Shuangfei Zhai et al (from Apple Computer), "An Attention Free Transformer" (AFT), arxiv:2105.14103, May 2021.
- Bo Peng et al, "RWKV: Reinventing RNNs for the Transformer Era," arxiv:2305:13048, Findings of EMNLP 2023.
- Bo Peng et al, "Eagle and Finch: RWKV withMatrix-Valued States and Dynamic Recurrence", arXiv:2404.05892v4, Sept 2024, [Interesting discussions in the "Limitations" section of this paper.]
- Zhiyuan Li, Tingyu Xia, Yi Chang and Yuan Wu, "A Survey of RWKV", arxiv2412.14847v2, Jan 2025
- <u>https://huggingface.co/blog/rwkv</u>
- <u>https://www.rwkv.com</u>
- Short Talk by Eugene Cheah From idea to LLM (RWKV / Recursal) <u>https://www.youtube.com/watch?v=yiewqC6qNM8</u>
- Reading the Original RWKV paper with Yannic Kilcher RWKV: Reinventing RNNs for the Transformer Era (Paper Explained), <u>https://www.youtube.com/watch?v=x8pW19wKfXQ</u>
- 侯皓文: RWKV论文解读 在Transformer时代重塑RNN, <u>https://www.youtube.com/watch?v=oluAv99GHBs</u>
- Deep Dive on RWKV: 2-hour interview w/ Eugene Cheah, an RWKV committee member: <u>https://youtu.be/dvk6X5zelfY</u>

2024 in Post-Transformers Architectures (State Space Models, RWKV) [LS Live @ NeurIPS]

https://www.latent.space/p/2024-post-transformers