
IERG5050 AI Foundation Models, Systems and Applications
Spring 2025

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk

http://www.ie.cuhk.edu.hk/wclau

1

Beyond Transformers: Alternative Architectures for LLMs
SSMs, MAMBA, RWKV

mailto:wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.
● UC Berkeley CS294-162: AI-Systems (LLM Edition), Fall 2023, by Profs. Joseph E. Gonzalez and Matei Zaharia,

https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e
29abb

● Shubham Gupta, “State Space Models 101”, https://github.com/goodhamgupta/ssm_101/blob/main/ssm_101.pptx
● Stanford CS336: Language Modeling from Scratch, Spring 2024

○ by Profs. Tatsunori Hashimoto, Percy Liang, https://stanford-cs336.github.io/spring2024/
● Stanford CS229S: Systems for Machine Learning, Fall 2023
 by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/
● CMU 11-667: Large Language Models: Methods and Applications, Fall 2024

by Profs. Chenyan Xiong and Daphne Ippolito, https://cmu-llms.org
● CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024

by Prof. Graham Neubig, https://phontron.com/class/anlp2024/lectures/
● UPenn CIS7000: Large Language Models, Fall 2024

by Prof. Mayur Naik, https://llm-class.github.io/schedule.html
● UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024

by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
● MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024
 by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940
● UMD CMSC848K: Multimodal Foundation Models, Fall 2024

by Prof. Jia-Bin Huang, https://jbhuang0604.github.io/teaching/CMSC848K/
● NeurIPS 2024 Invited Talk: “Systems for Foundation Models, and Foundation Models for Systems,”
 by Prof. Chris Re, Stanford.
● CUHK-SZ CSC6203: Large Language Models, Fall 2024
 by Prof. Benyou Wang, https://llm-course.github.io; https://github.com/FreedomIntelligence/CSC6203-LLM

Acknowledgements

2

https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e29abb
https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e29abb
https://github.com/goodhamgupta/ssm_101/blob/main/ssm_101.pptx
https://stanford-cs336.github.io/spring2024/
https://cs229s.stanford.edu/fall2023/
https://cmu-llms.org/
https://phontron.com/class/anlp2024/lectures/
https://llm-class.github.io/schedule.html
https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
https://jbhuang0604.github.io/teaching/CMSC848K/
https://llm-course.github.io/
https://github.com/FreedomIntelligence/CSC6203-LLM

State Space Models (SSMs),
Selective State Space Models (SSSMs) and

MAMBA

High-level Summary Video:
MAMBA and State Space Models Explained | SSM Explained

by AI Coeffee Break with Letitia
https://www.youtube.com/watch?v=vrF3MtGwD0Y

Detailed Insights by the Inventor: Prof. Albert GU,
On the Tradeoffs of State Space Models

https://simons.berkeley.edu/talks/albert-gu-carnegie-mellon-university-2024-09-27

https://icml.cc/virtual/2024/39087
3

https://www.youtube.com/watch?v=vrF3MtGwD0Y
https://simons.berkeley.edu/talks/albert-gu-carnegie-mellon-university-2024-09-27
https://icml.cc/virtual/2024/39087

State Space Models 101

4

Shubham Gupta
 in/shubhamgupta2208 shubhamg.in

Sequence Modelling: Recap

5

Goal: Map an input sequence to an output sequence

Sequence Modelling: Models

6

��
��
☹

⫲ ��
��
☹

∥

Sequence Modelling: Transformers
➢ SoTA on sequence modelling tasks
➢ Struggle to scale over long sequences
➢ Why do we care?

○ Enable new capabilities
○ Model other sequential data

7

��
��
��

Long Range Arena Benchmark
➢ LRA [Yi Tay et al., 2020]
➢ Measure long-context model quality
➢ Multiple input modalities
➢ Total tasks: 6
➢ Input sequence length: 1k-16k
➢ Transformer Performance:

○ Avg. Accuracy: 52% 👎
○ Unable to solve Path-X

8

Obtain best of all
models for

long-context?

9

��
��
��

∥

State Space Models
➢ Kalman, 1960
➢ Used in control theory/signal

processing
➢ Modelled as continuous-timed

differential equation
➢ 1-layer, Linear Model
➢ Time - Invariant

10

Deep SSMs
➢ Deep, non-linear model
➢ Deterministic transformation

11

SSM Properties

12

SSM: Recurrent

13

SSM: Convolutional

14

SSM: Convolutional Kernel

15

SSM: Convolutional Kernel

16

SSM: Convolutional Kernel

17

SSM: Convolutional Kernel

18

Deep SSM: Challenges

19

➢ Modelling Challenge
○ SSMs inherit problems of CNN,RNN

on LRA
○ Random init A

■ 60% acc sequential MNIST 🙁
➢ Computation Challenge

○ SSM has nice properties if and
are known

○ Computing them is hard!
➢ Computing the Kernel

○ A power 🔼-> vanishing gradient?
○ A power 🔼-> O(D2N) computation

■ Ideal -> O(N)

Mamba(S6): Selective SSM
➢ SSSSSS…🐍
➢ Improves SSM performance on

copying tasks
➢ Handles input data that is

varying in time
➢ Only supports recurrent form

20

➕ ➕

Mamba: Architecture

21

Mamba: Implementation

22

Mamba: Scan Operation

23

References on Parallel Scan

24

● Slides from: Dan Grossman, U of Washington,
http://homes.cs.washington.edu/~djg/teachingMaterials/spac

● Slides from David Walker, Princeton,
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.
pdf

● MIT 18.337 Modern Numerical Computing Lecture notes on Parallell Prefix:
https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf

● Parallel Scan – Udacity, Slides from
https://youtu.be/OO3o14cINbo?si=6ft0vTCU5FSu8Rl2

● Stanford CS149 Parallel Computing lecture:
https://www.youtube.com/watch?v=Ba3TqxSgnTk

http://homes.cs.washington.edu/~djg/teachingMaterials/spac
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf
https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf
https://youtu.be/OO3o14cINbo?si=6ft0vTCU5FSu8Rl2
https://www.youtube.com/watch?v=Ba3TqxSgnTk

The Prefix-sum Problem

25

Parallel Prefix Sum

26

Parallel Prefix Sum

27

Parallel Prefix Sum

28

Parallel Scan: Another Example

29

30

Parallelizing a Recurrence Relation Computation via
Parallel Scan

- The parallel scan operation works in two passes:
- An Up-sweep
- A down-sweep

- During the up-sweep, we first break down our input into blocks. Here,
assume that we use a block of 2 elements

- The variable ”R” just represents the range of elements being considered,
and the variable “S” represent the sum

- Initialize the variable “S” for each left node in the tree as the element at
that index

- Sum up child nodes and assign the value to “S” in the parent node

Parallel Scan: Up-Sweep

31

Parallel Scan: Up-Sweep

32

Parallel Scan: Up-Sweep

33

Parallel Scan: Down-Sweep

34

Parallel Scan: Down-Sweep

35

Parallel Scan: Down-Sweep

36

Parallel Scan: Down-Sweep

37

Parallel Scan: Final Result

38

Mamba: Synthetic Tasks Results

39

Mamba: LM Results

40

Mamba: Scaling Results

41

Mamba: Other Modalities

42

Mamba: Derivatives
➢ Jamba
➢ MambaByte
➢ Vision Mamba
➢ Mamba MoE
➢ U-Mamba
➢ Mamba-Morph
➢ Swin-UMamba
➢ Graph Mamba

43

[O, Lieber et al., 2024]
[J Wang et al., 2024]
[Zhu, L, et al. , 2024]
[Pióro, Maciej, 2024]
[Ma, Jun et al., 2024]
[Guo, Tao et al., 2024]
[Liu, J, et al., 2024]
[Behrouz et al., 2023]

Mamba got
Outstanding Paper Award in COLM 2024

Theoretical Work on Capabilities of SSMs vs. Transformers

44

● Naoki Nishikawa, Taiji Suzuki. ”State Space Models are Provably
Comparable to Transformers in Estimating Functions in Dynamic Token
Selection,” to appear in ICLR 2025.

● Samy Jelassi, David Brandfonbrener, Sham M. Kakade, Eran Malach,
“Repeat After Me: Transformers are Better than State Space Models at
Copying, Transformers are Better than State Space Models at Copying”,
ICML 2024.

Conclusion

45

➢ SSMs are a promising
alternative to attention.

➢ Inference according to input
was realized by Mamba.

➢ Hardware-Aware algorithms
are the key to scale.

➢ Promising other research:
○ RWKV [Peng, Bo et al., 2023]
○ Gemini 1.5 [Gemini Team, 2024]

RWKV - Receptance Weighted Key Value

(pronounced as “RwaKuv”)

Receptance Weighted Key Value
(RWKV): Reinventing RNNs for the

Transformer Era
(based on the “old” RWKV-v4 architecture)

Presentation by Devan S. Zhun W. Ziyang W.

RWKV
Beyond Transformers - Intro to RWKV Architecture & The World Tokenizer

Eugene Cheah & Harrison Vanderbyl, Dec 2023
https://www.youtube.com/watch?v=I-HMKky7Qsw

Performance of Eagle-7B, an RWKV-v5 Architecture, Jan 2024
https://www.youtube.com/watch?v=gHdRgfmAVIw

Latest model as of Feb 2025: RWKV-v7 (Goose)
https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v7/rwkv_v7_demo.py

48

https://www.youtube.com/watch?v=I-HMKky7Qsw
https://www.youtube.com/watch?v=gHdRgfmAVIw
https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v7/rwkv_v7_demo.py

High-Level Overview of
RWKV

RNN vs. CNN vs. Quai-RNN

Source: J. Bradbury et al, Quasi RNN, 2016, https://arxiv.org/pdf/1611.01576v2 See also: https://paperswithcode.com/method/qrnn

https://arxiv.org/pdf/1611.01576v2

From RNN to Quai-RNN to RWKV

RWKV builds on existing sequence-to-sequence models with an
architecture of stacked residual blocks (alternating time-mixing and
channel-mixing blocks)

(Continuous blocks can occur simultaneously)

From RNN to Quai-RNN to RWKV

(Continuous blocks can occur simultaneously)

RWKV builds on existing sequence-to-sequence models with an
architecture of stacked residual blocks (alternating time-mixing and
channel-mixing blocks)

From RNN to Quai-RNN to RWKV

(Receptive field grows in similar manner as CNN)

(Continuous blocks can occur simultaneously)

RWKV builds on existing sequence-to-sequence models with an
architecture of stacked residual blocks (alternating time-mixing and
channel-mixing blocks)

RWKV: architecture overview

● R: Receptance vector acting as the
acceptance of past information.

● W: Weight is the (trainable)
positional weight decay vector.

● K: Key, analogous to K in standard
aention.

● V: Value, analogous to V in standard
aention.

Defining RWKV
The RWKV architecture derives its name from the four primary
model elements used in the time-mixing and channel-mixing
blocks:

• R: Receptance vector acting as the acceptance of past information
• W: Weight is the positional weight decay vector (trainable model parameter)
• K: Key is a vector analogous to K in traditional aention
• V : Value is a vector analogous to V in traditional aention

Defining RWKV

The RWKV architecture derives its name from the four primary model elements used in the
time-mixing and channel-mixing blocks:

• R: Receptance vector acting as the acceptance of past information
• W: Weight is the positional weight decay vector (trainable model parameter)
• K: Key is a vector analogous to K in traditional aention
• V : Value is a vector analogous to V in traditional aention

wkvt acts in place of An(Q, K, V) without quadratic cost
(note the scalar interactions)

”Inspired” by “An Attention-Free Transformer (AFT)”, by Zhai et al, 2021

RWKV: architecture overview

● R: Receptance vector acting as the
acceptance of past information.

● W: Weight is the (trainable)
positional weight decay vector.

● K: Key, analogous to K in standard
aention.

● V: Value, analogous to V in standard
aention.

Channel and Time Mixing

Analog: longer-term memory
(Mix over time and channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis
from the authors about the short term and long term natures of channel and time mixing.

https://wiki.rwkv.com/advance/architecture.html

Channel and Time Mixing

Analog: longer-term memory
(Mix over time and channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

“forget gate”

“forget gate”
(sigmoid of receptance)

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis
from the authors about the short term and long term natures of channel and time mixing.

https://wiki.rwkv.com/advance/architecture.html

Channel and Time Mixing

Analog: longer-term memory
(Mix over time and channels)

Analog: shorter-term memory
(Mix over channels only)

Channel Mixing Time Mixing

“forget gate”

“forget gate”
(sigmoid of receptance)

Please refer to https://wiki.rwkv.com/advance/architecture.html for more thorough analysis
from the authors about the short term and long term natures of channel and time mixing.

(token shifts can just
be considered as x)̃

(token shifts can just
be considered as x)̃

https://wiki.rwkv.com/advance/architecture.html

RWKV In-Depth

RWKV: architecture overview
● R: Receptance vector acting as the

acceptance of past information.
● W: Weight is the (trainable)

positional weight decay vector.
● K: Key, analogous to K in standard

aention.
● V: Value, analogous to V in standard

aention.

RWKV: architecture overview
● R: Receptance vector acting as the

acceptance of past information.
● W: Weight is the (trainable)

positional weight decay vector.
● K: Key, analogous to K in standard

aention.
● V: Value, analogous to V in standard

aention.
Sigmoid

(forget gate)

RWKV: architecture overview
● R: Receptance vector acting as the

acceptance of past information.
● W: Weight is the (trainable)

positional weight decay vector.
● K: Key, analogous to K in standard

aention.
● V: Value, analogous to V in standard

aention.

RWKV: architecture overview
● R: Receptance vector acting as the

acceptance of past information.
● W: Weight is the (trainable)

positional weight decay vector.
● K: Key, analogous to K in standard

aention.
● V: Value, analogous to V in standard

aention.

Time-Mixing Block

Time-Mixing Block
Analogous to
standard transformer

Time-Mixing Block
Token Shift

Time-Mixing Block

“Aention” in RWKV

WKV Computation

WKV Computation

WKV Computation

Engineering trick: special
treatment for the current
timestep t. Need an additional
learned u vector to “compensate
for degradation of w”.

Time-Mixing Block

Channel-Mixing Block

Channel-Mixing Block

Putting them together:

Notes on efficiency

● Given T tokens, d hidden
dimension.

● Standard aention: O(T^2d).

Notes on efficiency

● Given T tokens, d hidden
dimension.

● Standard aention: O(T^2d).
● WKV:

○ We can reuse v and k!

Notes on efficiency

● Given T tokens, d hidden
dimension.

● Standard aention: O(T^2d).
● WKV:

○ We can reuse v and k!
○ Compute (update) the

wkv score costs O(Td).

Express WKV recursively

Express WKV recursively

Key idea: WKV can be viewed both as
aention and RNN-like hidden state.

Training: time-parallel mode

Similar to Transformer: take
advantage of parallelized
training.

● Wr, Wk, Wv matrices are
easily parallelizable.

● WKV is time-dependent,
but can be parallelized
along axis of batch and
dimension.

● Further, token shift is
implemented easily with
nn.ZeroPad2d((0,0,1,-1))

Inference: time-sequence mode

Similar to RNN: take advantage of
constant memory footprint.

● Replace the time-mixing
block with the equivalent
RNN cell.

● Constant speed and memory
footprint, regardless of
sequence length.

● In contrast, self-aention
requires linearly growing KV
cache for increasing
sequence length.

Experiments

Performance and scaling behavior

Effect of context length

Inference efficiency

Observation on prompts

Prompt for ChatGPT: Prompt for RWKV:

Takeaway
Main Contributions:

● A linear “aention” mechanism that replaces the quadratic self-aention.
● Enjoy both parallelization (for training) and constant speed/memory footprint (for

inference).

Limitations:
● RNN-style single vector representation limits the model’s ability to “look back”,

compared to exact information retained in self-aention.
● Consequently, prompt engineering is crucial to the model performance.

Rapidly
Evolving
Architecture of
RWKV

Benchmark Performance of RWKV-7 (circa Feb 2025)

More Benchmark Performance of RWKV-7 (circa Feb 2025)

References on RWKV

93

● James Bradbury et al (from Salesforce Research), “Quasi-Recurrent Neural Networks,” arxiv:1611.10576v2,
Nov 2016.

● Shuangfei Zhai et al (from Apple Computer), ”An Attention Free Transformer” (AFT), arxiv:2105.14103, May
2021.

● Bo Peng et al, “RWKV: Reinventing RNNs for the Transformer Era,” arxiv:2305:13048, Findings of EMNLP
2023.

● Bo Peng et al, “Eagle and Finch: RWKV withMatrix-Valued States and Dynamic Recurrence”,
arXiv:2404.05892v4, Sept 2024, [Interesting discussions in the “Limitations” section of this paper.]

● Zhiyuan Li, Tingyu Xia, Yi Chang and Yuan Wu, “A Survey of RWKV”, arxiv2412.14847v2, Jan 2025
● https://huggingface.co/blog/rwkv
● https://www.rwkv.com
● Short Talk by Eugene Cheah - From idea to LLM (RWKV / Recursal)

https://www.youtube.com/watch?v=yiewqC6qNM8
● Reading the Original RWKV paper with Yannic Kilcher RWKV: Reinventing RNNs for the Transformer Era

(Paper Explained), https://www.youtube.com/watch?v=x8pW19wKfXQ
● 侯皓文：RWKV论文解读 - 在Transformer时代重塑RNN, https://www.youtube.com/watch?v=oIuAv99GHBs
● Deep Dive on RWKV: 2-hour interview w/ Eugene Cheah, an RWKV committee member:

https://youtu.be/dvk6X5zeIfY

https://huggingface.co/blog/rwkv
https://www.rwkv.com/
https://www.youtube.com/watch?v=yiewqC6qNM8
https://www.youtube.com/watch?v=x8pW19wKfXQ
https://www.youtube.com/watch?v=oIuAv99GHBs
https://youtu.be/dvk6X5zeIfY

2024 in Post-Transformers Architectures
(State Space Models, RWKV)

[LS Live @ NeurIPS]

https://www.latent.space/p/2024-post-transformers

94

https://www.latent.space/p/2024-post-transformers

